
Mastering
Custom Activities

July 13, 2023

2

Agenda

• Introductory Notions

• .NET

• UiPath Project Compatibility

• WF vs Core WF

• Custom Activities intro - source

• What is a custom activity?

• Types of Custom Activities

• How To Create a Custom Activity using code

• Adding dependencies

• Understanding .csproj files

• Implement the logic

• Build

• How to publish a Custom Activity

• How to debug a custom Activity?

• How To Create a Custom Activity using the Activity Creator

• Understanding folder structure

• Create a simple activity

• Create a scope activity

• Understanding activity structure

• Understanding activity design

• Useful tips

• Targeting multiple .NET Runtimes

• Prerequisites

• Step by step migration

Introductory
Notions

4

.NET

Non-Invasive
Technology

• UiPath Automations are developed and executed using .NET

• Depending on the UiPath Project Compatibility Type you use, internally UiPath can use a different
“version” of .NET:

• In 2002, Microsoft released .NET Framework, a proprietary development platform for creating
Windows applications.

• In 2014, Microsoft introduced .NET Core as a cross-platform (Windows, Linux, MacOS), open-
source successor to .NET Framework. Subsequently, the name of this framework was changed
simply to .NET

• These 2 are not compatible!!!

.NET != .NET Framework!!!

(important!)

5

UiPath Project Compatibility

Non-Invasive
Technology

Target Framework
Moniker (.csproj file)

.NET Runtime
Compatibility
Type

net461.NET Framework 4.6.1Windows Legacy

net6.0-windows.NET 6 – Windows SpecificWindows

net6.0.NET 6
Cross-platform /
Windows

• Windows Legacy is deprecated since UiPath Studio 22.10. It should not be used
to create new projects.

• Cross-Platform automation projects are designed to run cross-platform on
Windows, Linux, and macOS operating systems (great for Serverless Robots).
Windows specific features are not available (like desktop applications
automation OR some excel activities)

• Windows automation projects are still using .NET but are platform-specific. All
windows specific features and packages can be used.

When building custom activities, we must target the appropriate runtime for the UiPath
Compatibility type we plan on using.

6

Windows Workflow Foundation:

• The foundation of the workflow designing and executing
experience in UiPath Studio is built using the Windows
Workflow Foundation Framework.

• This Framework was released as part of .NET Framework
(not compatible with .NET Core)

• This framework has both:

• A run-time engine that allows us to execute workflows.

• A rehostable designer to implement said workflows.

Core WF:

• UiPath created a ported version of Windows Workflow Foundation
to .NET 6, called CoreWF

• This is the version used for Windows and Cross-Platform UiPath
Projects

• It offers a very similar experience to Workflow Foundation, both
when used in UiPath Studio and when building custom activities.

Windows Workflow Foundation and Core WF

Custom
activities intro

8

What is a custom activity?

Custom Activities are .Net classes that inherit one of the WF specific activity classes
(NativeActivity, CodeActivity, AsyncCodeActivity)

Activities are the building blocks used in UiPath Studio to design automation
projects.

9

Create reusable
components and share

between multiple
projects

Custom activities benefits

Easy change/update
the logic by simply

update in one place

Integrate complex
logic in your RPA

projects

Extend the use of
RPA by creating new
ways of interacting

with different
applications

10

Phase One
Create Custom Activity
• Create a library

project in Visual
Studio

• Edit .csproj files

• Create activities

• Implement the logic

• Design activities

• Build

Phase Three
Consume Custom Activity
• Create/Open a

project in UiPath
Studio

• Add NuGet package
in phase two as
dependency

• Drag-drop the activity

• Update parameters

• Run the project

Phase Two
Publish Custom Activity

Custom Activities lifecycle

• Generate NuGet
package

• Add NuGet package
to a NuGet Feed
accessible to our
robots/developers

1 2 3

11

Custom Activities types

CodeActivity

• Helps us to create basic activities that execute simple pieces of logic.

• This is used to create very simple, linear activities.

NativeActivity

• Helps us to create more complex activities, like scope activities.

• More advanced control flow for its execution or the execution of its child activities

• With a Native activity we can Abort, Cancel or Schedule the Child activity.

AsyncCodeActivity

• Enables derived activities to implement asynchronous execution logic.

• Leverages the Asynchronous Programming Model (BeginAsync & EndAsync methods).

ContinuableAsyncCodeActivity & ContinuableAsyncNativeActivity

• Only with the UiPath Activity Creator Package

• These leverage the Task-based Asynchronous Pattern (async keyword, Task class, etc.)

How to create
Custom Activities
using code

13

 Visual Studio Community/Professional/Enterprise
2022 with the .NET desktop development
workload installed.

 UiPath's Marketplace Feed
(https://gallery.uipath.com/api/v3/index.json) as a
package source in Visual Studio. If this feed is not
available in Visual Studio during development, the
activities will not build successfully.

 NET 6

 UiPath Studio >=22.10.x

Prerequisites:

14

1. Create project in Visual Studio

1. Open Visual Studio >> Create New Project >> Class
Library

2. Select framework .NET6.0 in order to be compatible with
UiPath Studio >=22.10

3. Create Project.

15

2.a. Add Dependencies

1. Start by Editing the .csproj file (double click project item)

2. Add the latest versions of the following packages (you can copy them from here):

Alternatively, use the NuGet Package Manager to add the packages without editing the .csproj:

3. Add any 3rd party NuGet packages, too.

These packages are also used internally
by UiPath Studio, to avoid conflicts we

must mark them as private:
PrivateAssets=“All”

16

2.b. Understanding .csproj files

At least these properties need to be updated:

• Project SDK
<Project Sdk="Microsoft.NET.Sdk.WindowsDesktop" >

• Target frameworks (see slide 5 for values)
<TargetFrameworks>net6.0-
windows</TargetFrameworks>

• OutputPath is the where the project will be built.
<OutputPath>..\..\Output</OutputPath>

• Any packages we need to use are referenced using a
PackageReference XML Node. These are grouped
using ItemGroup nodes:

<ItemGroup>
<PackageReference Include=“ClosedXML”
Version=“0.97.0”>

…
</ItemGroup>

Extra content may be present here, in case
additional resources or Satellite Assemblies
(useful for localization) are needed.

17

3. Create Activity class

1. Add class. Right click on project >> Add >> New
Item… >> C# Class

2. Set a Class name. The class name will be the activity
name.

3. Add using System.Activities to the new class.
4. The class needs to inherit one of the WF specific

activity classes (NativeActivity, CodeActivity,
AsyncCodeActivity)

18

4. Implement the logic

• For CodeActivity and NativeActivity, we need to overwrite the
Execute method.

• For AsyncCodeActivitiy we need to overwrite BeginExecute
and/or EndExecute methods.

• By using NativeActivity we can Abort, Cancel or Schedule child
activity by using one of the following methods:
AbortChildInstance, CancelChild, CancelChildren,
ScheduleAction.

Define Parameters

Define Activity Logic

• Depending on the type of parameter, we should use the Generic
classes InArgument<T>, OutArgument<T> or
InOutArgument<T> to define our arguments

• Attributes such as Category, RequiredArgument, Description,
DisplayName and many others can be used to customize the
look and behavior of each one of our arguments

19

5. Build the solution

The generated .dll file will have the same name as the project.

The .dlls will be created in OutputPath specified in the .csproj file.

The generated .dll file will be used to create the .nupkg.

Unit Tests can be configured to run after build, thus helping eliminate obvious bugs

Once your DLL(s) are generated, you can use the NuGet Package Manager to build
the package. However, it’s best to configure your solution OR use a CI/CD flow to
automatically build your package.

How to create
a Scope
Activity
using code

21

1. Create ScopeActivity class

1. Create a new class and inherit NativeActivity

2. Override the Execute Method

3. Add a constructor

4. Create the necessary arguments

22

2. Create the Scope Property

1. NativeActivities can use a property of type
ActivityAction<T> to store the Child Activities

• T is the type of the object we want to pass as
argument to child activities

2. In the constructor, we initialize our Body
property with an empty sequence

3. The argument passed to the Children also
needs to have a name.

• Children activities will use this name to
extract it from their context.

23

3. “Invoke” child activities

1. In the execute method, use the ScheduleAction
method to Invoke the Child Activities located in the
body property.

• Here is where you also pass the argument to
the child activities.

2. Optionally, you can also add
OnFaulted/OnCompleted callbacks

24

4. Create a child activity

1. Create another class that overrides
CodeActivity.

2. The only extra action is retrieving the
argument passed by the Parent Activity
to the ActivityDelegate<T>

• This property can be retrieved from
the CodeActivityContext

• We can identify it using the name we
set to the DelegateInArgument<T>
in the scope activity

25

5.b. Custom Activities Design Phase

CacheMetadata is a method that is called at the design time of your activity by the Workflow Runtime.

Why use CacheMetadata?

• By default, this method exposes parameters,
variables, activity delegates, etc. to the
Workflow Runtime.

•Without this method, the runtime has no
idea about what’s inside our activity!

• We can also use it to implement more
complex validation logic or add constraints

When is CacheMetadata called?

•When dragging your activity into a workflow.

•When modifying an argument of your activity.

•When running your workflow, before calling
your Execute method.

•When moving your activity inside of your
workflow.

If we override CacheMetadata, we must also invoke its base class
implementation, otherwise our workflow will throw an exception at runtime.

26

8.b. Custom Activities Design Phase

1. We can override the CacheMetadata
method for any type of custom activity,
just like in the example to the right.

2. Method AddValidationError can be used
to add a custom error message if needed.

3. But we must also invoke its base class
implementation, otherwise our workflow
will throw an exception at runtime.

CacheMetadata is invoked at design time, this means we will not be able to access the value of
InArguments or InOutArguments, since the values only become available at runtime. But we can check if
these are null or not.

How to publish
a Custom
Activity

28

1. Create packaging project
1. Add a new C# Class Library to the existing solution.

This will be our packaging project.

2. Create {ProjectName}.build.props file containing
Company, Copyright, VersionPrefix, Package Title and
other related properties. Usually, this file is created in the
solutions folder.

3. Import {ProjectName}.build.props file by using the
following line in the .csproj file:
• <Import Project="../MyActivites.build.props" />

4. Add .dll files. These files will be present in the
generated .nupkg file.

5. Delete .cs file. Keep your publishing project as
simple as possible!

MyActivities.build.props

Solution

29

1. Create packaging project - example

MyActivities.Packaging.csproj

Note: When using activity creator, all three dlls must be imported. Example:

30

2. Edit .csproj file – part 1

1. Set GeneratePackageOnBuilt to True

2. Update other .csproj properties, like:
• TargetFrameworks
• UseWPF
• etc.

31

3. Edit .csproj file – part 2

1. Add dlls

2. Add dependencies in .csproj by using ItemGroup

2. Add a Project Reference to the other solution projects so far, so that they will be rebuilt every time you
build your Packaging project:

Project References and references to packages used internally by UiPath should be marked as
private, lest your project fails to compile: PrivateAssets=“All”

32

4. Build the project and open package

• Right click on packaging project. Click build.

• A .nupkg file will be created in OutputPath.

• Install Nuget Package Explorer.

• Right-click on .nupkg file. Open With -> Nuget
Package Explorer. O

P
E

N
B

U
IL

D

How to debug
a Custom
Activity?

34

1. Debug Custom Activity - Prerequisites

 Build your solution in Visual Studio in order to be able to generate your .nupkg.

 Create your .nupkg and install it in UiPath Studio.

 Keep both Visual Studio and UiPath Studio opened because we'll use them.

35

2. Debug Custom Activity

1. Create a workflow in UiPath Studio

2. Insert your custom activity

3. Add a breakpoint in UiPath Studio and run your workflow in Debug Mode.

4. Add some breakpoints in Visual Studio.

5. Attach to process in Visual Studio (Debug->Attach To Process -> Select "UiPath.Executor.exe" process from Available
Processes).

*Only first time you must do these steps. After that, you can directly click on "Reattach to process" (Shift+ Alt + P). Visual Studio stores your selected process.

6. Click Continue in UiPath Studio and your execution continues.

How to create
a Custom
Activity
using the
Activity
Creator

37

 Visual Studio Community/Professional/Enterprise
2022 with the .NET desktop development workload
installed.

 UiPath's Marketplace Feed
(https://gallery.uipath.com/api/v3/index.json) as a
package source in Visual Studio. If this feed is not
available in Visual Studio during development, the
activities will not build successfully.

 UiPath Activity Creator Extension installed in Visual
Studio

 NET 6

 UiPath Studio >=22.10.x

Prerequisites:

Version 4.0 of the Activity Creator only works with Visual Studio 2022. Likewise, the activities produced target .NET 6
Windows projects.
To create activities compatible with older versions of Visual Studio (>= 2019.) or .NET, please use version 3 of the
extension.

38

1. Create project in Visual Studio
Open Visual Studio >> Create New Project >> UiPath Standard Activity Project.

project name convention: <Your company's name>.<Your product's name>

If the Framework cannot be changed when we create the project,
this can be changed by editing the metadata for every project
(edit .csproj file).

39

2. Understanding folder structure – main folder

• Auxiliary project (MyActivities.Notepad) contains all the custom classes which can be used in subsequent
projects. Examples: custom datatypes, interfaces, anumes, auxiliary classes, etc. This is optional!

• Activity project (MyActivities.Notepad.Activities) contains the logic of our activities. Each activity has
a corresponding file in activity project. In this file we can customize the activity properties (Category, Name,
Description, Direction, Type, Required)

• Designer project contains all the UI elements for your activities (Custom controls, themes, converters and the
activity UIs).

• Each activity can have a corresponding Xaml and Xaml.cs in designer project.
• The Design of our activities is built using WPF (Windows Presentation Foundation Controls)

40

2. Create a scope activity

Create the following activity:

• Name: NotepadAppScope
• Type: Scope
• Input arguments:

o FilePath - InArgument<string>

Open “Add Activities” Wizard:

41

3. Create a simple activity

Create the following activity:

• Name: ReadText
• Type: Simple
• Output arguments:

o Text - OutArgument<string>

Open “Add Activities” Wizard:

42

4. Understanding Activity Structure

• This scope activity implements
ContinuableAsyncNativeActivity that inherits
the NativeActivity class. ContinuableAsyncNativeActivity is
used to improve the performance of using the WF specific
activity classes in our project.

• By using ExecuteAsync method, the parent activity starts
the execution of child activity (calling ScheduleAction) and
pass the value for the DelegateArgument.

• All other components (CacheMetadata, Events, Helpers) are
similar to those used in creating activities using code.

43

5. Understanding Activity Design

• The ActivityDesigner control is
the container of the UI elements
we want to encapsulate.

• WorkflowItemPresenter is used
to Bind the Body Property to an
empty activity container in the
page. The binding is done by
using the databinding option
offered by WPF.

At runtime, the DesignerMetadata class will
be used to load the designer metadata.

44

7. Build the solution

We need to create a .dll for each project from the first folder as follows:

DLLProject Name

MyActivities.Notepad.dllMyActivities.Notepad

MyActivities.Notepad.Activities.dllMyActivities.Notepad.Activities

MyActivities.Notepad.Activities.Design.dllMyActivities.Notepad.Activities.Design

The .dlls will be created in OutputPath specified in PropertyGroup (in .csproj file).

45

7. Publishing the solution

1. Right-click your Design project and select Publish 2. Create Profile and pick a publish target

3. Configure the rest of the properties and Publish

Detailed instructions can be found here:
https://docs.uipath.com/developer/docs/buildi
ng-activity-packages

46

8. Understanding folder structure – shared folder

Contains handy classes and controls that can be used to speed up development.

The Shared Project does not get compiled on its own. When
referenced by another project, the code is effectively compiled
as part of that project.
Shared projects cannot reference any other project type (including
other Shared Projects)

Design shared project contains
classes/interfaces which can be used in Design
Project from main folder.

Activities shared project contains classes/interfaces which can be
used in Activities Project from main folder. Usually, the activity class
inherits one of classes from Runtime folder, which are classes
derived from one of the WF specific activity classes.

47

Useful tips – how to add drop-down list property

48

Useful tips – how to add checkbox property

49

Enforce Child Activity is inside parent scope

• The ActivityConstraints static class in UiPath.Shared.Activities project can provide a constraint that
loops through the parents of a specific activity and checks if at least one of them is of a specific type.

• We can add this Constraint in our activity’s constructor:

Targeting
multiple .NET
Runtimes

51

 Visual Studio Community/Professional/Enterprise
2022 with the .NET desktop development workload
installed.

 UiPath's Marketplace Feed
(https://gallery.uipath.com/api/v3/index.json) as a
package source in Visual Studio. If this feed is not
available in Visual Studio during development, the
activities will not build successfully.

 UiPath Activity Creator Extension installed in
Visual Studio.

 NET 6

 UiPath Studio >=22.10.x

Prerequisites:

52

Background Information

• Ideally, when we build an activity package, we want it to be usable across all Compatibility Types in UiPath
Studio.

o To achieve this, we need to use multiple Target Frameworks.

• The dependencies we use might not be compatible with all the Target Frameworks selected.

o We need to always check the compatibility of our dependencies and even use different versions or
different packages altogether to achieve the desired level of compatibility.

• ***.***.Activities.Design packages use WPF, this means that they can only be used on Windows
machines and they’re incompatible with the “.net6.0” target.

o When targeting Cross-Platform projects, do not include the ***.***.Activities.Design dll.

53

Configuring .csproj

Auxiliary project (MyActivities.Notepad) &
Activities project (MyActivities.Notepad.Activities) :

1. Add all the target frameworks you want to support in the .csproj file, separated by “;”

2. If using both .NET Framework 4.6.1 and .NET 6.0, you will need to use different WF references for each
target framework. We can do this using a Condition attribute. Replace the Existing References with the
following:

54

Configuring .csproj

Designer project (MyActivities.Notepad.Activities.Design):

1. Add all the target frameworks you want to support in the .csproj file, separated by “;”. Designer Projects
use WPF, so we cannot use “net6.0”, we need to use the platform specific “net6.0-windows” target:

2. If using both .NET Framework 4.6.1 and .NET 6.0 Windows, you will need to use different WF
references for each target framework. We can do this using a Condition attribute. Replace the
Existing References with the following:

55

Understanding package contents

One .NET folder/ .NET Framework folder will
be created for each target framework.

When the .nupkg is added to the UiPath
Studio project, the required dlls (from net461
folder or from net6.0-windows7.0 folder) will be
imported, based on the UiPath Studio
project compatibility.

Dependencies must be runtime specific.

56

• Targeting .NET Frameworks: https://learn.microsoft.com/en-us/dotnet/standard/frameworks

• Windows Workflow Foundation

• Documentation: https://learn.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/

• Samples: https://learn.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/samples/

• Windows Workflow Foundation port to .NET 6 done by UiPath: https://github.com/UiPath/CoreWF

• !!! Using the UiPath Activity Creator: https://docs.uipath.com/developer/docs/using-activity-creator

• !!! Migrating Activities to .NET 6: https://docs.uipath.com/developer/docs/migrating-activities-to-net#step-1-migrate-the-project-to-the-
new-sdk-style-format-and-add-the-net60-windows-target

• Understanding the Project File: https://learn.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-
enterprise/understanding-the-project-file

• Exposing data with CacheMetadata: https://learn.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/exposing-data-
with-cachemetadata

• Windows Presentation Foundation: https://learn.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-6.0

• Managing Activities Packages: https://docs.uipath.com/studio/docs/managing-activities-packages

References & useful links

